Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(4): e0177323, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38530012

RESUMO

Dengue vaccine candidates have been shown to improve vaccine safety and efficacy by altering the residues or accessibility of the fusion loop on the virus envelope protein domain II (DIIFL) in an ex vivo animal study. The current study aimed to comprehensively investigate the impact of DIIFL mutations on the antigenicity, immunogenicity, and protective efficacy of Japanese encephalitis virus (JEV) virus-like particles (VLPs) in mice. We found the DIIFL G106K/L107D (KD) and W101G/G106K/L107D (GKD) mutations altered the binding activity of JEV VLP to cross-reactive monoclonal antibodies but had no effect on their ability to elicit total IgG antibodies in mice. However, JEV VLPs with KD or GKD mutations induced significantly less neutralizing antibodies against JEV. Only 46% and 31% of the KD and GKD VLPs-immunized mice survived compared to 100% of the wild-type (WT) VLP-immunized mice after a lethal JEV challenge. In passive protection experiments, naïve mice that received sera from WT VLP-immunized mice exhibited a significantly higher survival rate of 46.7% compared to those receiving sera from KD VLP- and GKD VLP-immunized mice (6.7% and 0%, respectively). This study demonstrated that JEV DIIFL is crucial for eliciting potently neutralizing antibodies and protective immunity against JEV. IMPORTANCE: Introduction of mutations into the fusion loop is one potential strategy for generating safe dengue and Zika vaccines by reducing the risk of severe dengue following subsequent infections, and for constructing live-attenuated vaccine candidates against newly emerging Japanese encephalitis virus (JEV) or Japanese encephalitis (JE) serocomplex virus. The monoclonal antibody studies indicated the fusion loop of JE serocomplex viruses primarily comprised non-neutralizing epitopes. However, the present study demonstrates that the JEV fusion loop plays a critical role in eliciting protective immunity in mice. Modifications to the fusion loop of JE serocomplex viruses might negatively affect vaccine efficacy compared to dengue and zika serocomplex viruses. Further studies are required to assess the impact of mutant fusion loop encoded by commonly used JEV vaccine strains on vaccine efficacy or safety after subsequent dengue virus infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Vacinas contra Encefalite Japonesa , Animais , Camundongos , Aminoácidos , Anticorpos Neutralizantes , Anticorpos Antivirais , Dengue , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/prevenção & controle , Epitopos , Vacinas contra Encefalite Japonesa/genética , Proteínas do Envelope Viral/genética , Zika virus , Infecção por Zika virus
2.
Appl Microbiol Biotechnol ; 108(1): 242, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416210

RESUMO

Flavivirus virus-like particles (VLPs) exhibit a striking structural resemblance to viral particles, making them highly adaptable for various applications, including vaccines and diagnostics. Consequently, increasing VLPs production is important and can be achieved by optimizing expression plasmids and cell culture conditions. While attempting to express genotype III (GIII) Japanese encephalitis virus (JEV) VLPs containing the G104H mutation in the envelope (E) protein, we failed to generate VLPs in COS-1 cells. However, VLPs production was restored by cultivating plasmid-transfected cells at a lower temperature, specifically 28 °C. Furthermore, we observed that the enhancement in JEV VLPs production was independent of amino acid mutations in the E protein. The optimal condition for JEV VLPs production in plasmid-transfected COS-1 cells consisted of an initial culture at 37 °C for 6 h, followed by a shift to 28 °C (37/28 °C) for cultivation. Under 37/28 °C cultivation conditions, flavivirus VLPs production significantly increased in various mammalian cell lines regardless of whether its expression was transiently transfected or clonally selected cells. Remarkably, clonally selected cell lines expressing flavivirus VLPs consistently achieved yields exceeding 1 µg/ml. Binding affinity analyses using monoclonal antibodies revealed similar binding patterns for VLPs of genotype I (GI) JEV, GIII JEV, West Nile virus (WNV), and dengue virus serotype 2 (DENV-2) produced under both 37 °C or 37/28 °C cultivation conditions. In summary, our study demonstrated that the production of flavivirus VLPs can be significantly improved under 37/28 °C cultivation conditions without affecting the conformational structure of the E protein. KEYPOINTS: • Low-temperature culture (37/28 °C) enhances production of flavivirus VLPs. • Flavivirus VLPs consistently achieved yields exceeding 1 µg/ml. • 37/28 °C cultivation did not alter the structure of flavivirus VLPs.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Flavivirus , Chlorocebus aethiops , Animais , Flavivirus/genética , Temperatura , Vírus da Encefalite Japonesa (Espécie)/genética , Temperatura Baixa , Células COS , Mamíferos
3.
Heliyon ; 9(12): e22436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107297

RESUMO

Taiwan's experience with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 guided its development of strategies to defend against SARS-CoV-2 in 2020, which enabled the successful control of Coronavirus disease 2019 (COVID-19) cases from 2020 through March 2021. However, in late-April 2021, the imported Alpha variant began to cause COVID-19 outbreaks at an exceptional rate in Taiwan. In this study, we aimed to determine what epidemiological conditions enabled the SARS-CoV-2 Alpha variant strains to become dominant and decline later during a surge in the outbreak. In conjunction with contact-tracing investigations, we used our bioinformatics software, CoVConvert and IniCoV, to analyze whole-genome sequences of 101 Taiwan Alpha strains. Univariate and multivariable regression analyses revealed the epidemiological factors associated with viral dominance. Univariate analysis showed the dominant Alpha strains were preferentially selected in the surge's epicenter (p = 0.0024) through intensive human-to-human contact and maintained their dominance for 1.5 months until the Zero-COVID Policy was implemented. Multivariable regression found that the epidemic periods (p = 0.007) and epicenter (p = 0.001) were two significant factors associated with the dominant virus strains spread in the community. These dominant virus strains emerged at the outbreak's epicenter with frequent human-to-human contact and low vaccination coverage. The Level 3 Restrictions and Zero-COVID policy successfully controlled the outbreak in the community without city lockdowns. Our integrated method can identify the epidemiological conditions for emerging dominant virus with increasing epidemiological potential and support decision makers in rapidly containing outbreaks using public health measures that target fast-spreading virus strains.

4.
Viruses ; 14(1)2022 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35062317

RESUMO

Expansion of genotype I (GI) Japanese encephalitis viruses (JEV) has resulted in the replacement of the dominant genotype III (GIII) viruses, raising serious public health concerns for using GIII virus-derived vaccines to effectively control JEV epidemics. Therefore, this study used swine as the model to estimate the effectiveness of GIII live-attenuated vaccine against GI virus infection by comparing the incidence of stillbirth/abortion in gilts from vaccinated and non-vaccinated pig farms during the GI-circulation period. In total, 389 and 213 litters of gilts were recorded from four vaccinated and two non-vaccinated pig farms, respectively. All viruses detected in the aborted fetuses and mosquitoes belonged to the GI genotype during the study period. We thus estimated that the vaccine effectiveness of GIII live-attenuated vaccine against GI viruses in naive gilts based on the overall incidence of stillbirth/abortion and incidence of JEV-confirmed stillbirth/abortion was 65.5% (50.8-75.7%) and 74.7% (34.5-90.2%), respectively. In contrast to previous estimates, the GIII live-attenuated vaccine had an efficacy of 95.6% (68.3-99.4%) to prevent the incidence of stillbirth/abortion during the GIII-circulating period. These results indicate that the vaccine effectiveness of GIII live-attenuated JEV vaccine to prevent stillbirth/abortion caused by GI viruses is lower than that against GIII viruses.


Assuntos
Encefalite Japonesa/virologia , Genótipo , Doenças dos Suínos/virologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Culicidae , Vírus da Encefalite Japonesa (Espécie)/genética , Feminino , Imunização , Vacinas contra Encefalite Japonesa/imunologia , Filogenia , Suínos , Taiwan , Vacinas Atenuadas/imunologia
5.
PLoS Negl Trop Dis ; 15(12): e0009977, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34860839

RESUMO

Virologic surveillance of Japanese encephalitis virus (JEV) relies on collecting pig blood specimens and adult mosquitoes in the past. Viral RNAs extracted from pig blood specimens suffer from low detecting positivity by reverse transcription PCR (RT-PCR). The oronasal transmission of the virus has been demonstrated in experimentally infected pigs. This observation suggested oronasal specimens could be useful source in the virus surveillance. However, the role of this unusual route of transmission remains unproven in the operational pig farm. In this study, we explore the feasibility of using pig oronasal secretions collected by chewing ropes to improve the positivity of detection in commercial pig farms. The multiplex genotype-specific RT-PCR was used in this study to determine and compare the positivity of detecting JEV viral RNAs in pig's oronasal secretions and blood specimens, and the primary mosquito vector. Oronasal specimens had the overall positive rate of 6.0% (95% CI 1.3%-16.6%) (3/50) to 10.0% (95% CI 2.1%-26.5%) (3/30) for JEV during transmission period despite the negative results of all blood-derived specimens (n = 2442). Interestingly, pig oronasal secretions and female Culex tritaeniorhynchus mosquito samples collected from the same pig farm showed similar viral RNA positive rates, 10.0% (95% CI 2.1%-26.5%) (3/30) and 8.9% (95% CI 2.5%-21.2%) (4/45), respectively (p> 0.05). Pig oronasal secretion-based surveillance revealed the seasonality of viral activity and identified closely related genotype I virus derived from the mosquito isolates. This finding indicates oronasal secretion-based RT-PCR assay can be a non-invasive, alternative method of implementing JEV surveillance in the epidemic area prior to the circulation of virus-positive mosquitoes.


Assuntos
Secreções Corporais/virologia , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/veterinária , Boca/virologia , Cavidade Nasal/virologia , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Animais , Bioensaio , Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/transmissão , Fazendas , Feminino , Genótipo , Reação em Cadeia da Polimerase Multiplex , RNA Viral/genética , Suínos
6.
PLoS Pathog ; 15(8): e1007992, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31381617

RESUMO

Genotype I (GI) virus has replaced genotype III (GIII) virus as the dominant Japanese encephalitis virus (JEV) in the epidemic area of Asia. The mechanism underlying the genotype replacement remains unclear. Therefore, we focused our current study on investigating the roles of mosquito vector and amplifying host(s) in JEV genotype replacement by comparing the replication ability of GI and GIII viruses. GI and GIII viruses had similar infection rates and replicated to similar viral titers after blood meal feedings in Culex tritaeniorhynchus. However, GI virus yielded a higher viral titer in amplifying host-derived cells, especially at an elevated temperature, and produced an earlier and higher viremia in experimentally inoculated pigs, ducklings, and young chickens. Subsequently we identified the amplification advantage of viral genetic determinants from GI viruses by utilizing chimeric and recombinant JEVs (rJEVs). Compared to the recombinant GIII virus (rGIII virus), we observed that both the recombinant GI virus and the chimeric rJEVs encoding GI virus-derived NS1-3 genes supported higher replication ability in amplifying hosts. The replication advantage of the chimeric rJEVs was lost after introduction of a single substitution from a GIII viral mutation (NS2B-L99V, NS3-S78A, or NS3-D177E). In addition, the gain-of-function assay further elucidated that rGIII virus encoding GI virus NS2B-V99L/NS3-A78S/E177E substitutions re-gained the enhanced replication ability. Thus, we conclude that the replication advantage of GI virus in pigs and poultry is the result of three critical NS2B/NS3 substitutions. This may lead to more efficient transmission of GI virus than GIII virus in the amplifying host-mosquito cycle.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/virologia , Mosquitos Vetores , Mutação , Proteínas não Estruturais Virais/genética , Viremia/transmissão , Animais , Galinhas , Culex , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/genética , Feminino , Genótipo , RNA Helicases/genética , Serina Endopeptidases/genética , Suínos , Replicação Viral
7.
Sci Rep ; 8(1): 7481, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748549

RESUMO

Swine are a critical amplifying host involved in human Japanese encephalitis (JE) outbreaks. Cross-genotypic immunogenicity and sterile protection are important for the current genotype III (GIII) virus-derived vaccines in swine, especially now that emerging genotype I (GI) JE virus (JEV) has replaced GIII virus as the dominant strain. Herein, we aimed to develop a system to generate GI JEV virus-like particles (VLPs) and evaluate the immunogenicity and protection of the GI vaccine candidate in mice and specific pathogen-free swine. A CHO-heparan sulfate-deficient (CHO-HS(-)) cell clone, named 51-10 clone, stably expressing GI-JEV VLP was selected and continually secreted GI VLPs without signs of cell fusion. 51-10 VLPs formed a homogeneously empty-particle morphology and exhibited similar antigenic activity as GI virus. GI VLP-immunized mice showed balanced cross-neutralizing antibody titers against GI to GIV viruses (50% focus-reduction micro-neutralization assay titers 71 to 240) as well as potent protection against GI or GIII virus infection. GI VLP-immunized swine challenged with GI or GIII viruses showed no fever, viremia, or viral RNA in tonsils, lymph nodes, and brains as compared with phosphate buffered saline-immunized swine. We thus conclude GI VLPs can provide sterile protection against GI and GIII viruses in swine.


Assuntos
Anticorpos Neutralizantes/uso terapêutico , Proteção Cruzada , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/terapia , Vacinas contra Encefalite Japonesa/uso terapêutico , Vacinação/métodos , Animais , Anticorpos Neutralizantes/genética , Células CHO , Células COS , Chlorocebus aethiops , Cricetinae , Cricetulus , Proteção Cruzada/genética , Proteção Cruzada/imunologia , Modelos Animais de Doenças , Vírus da Encefalite Japonesa (Espécie)/classificação , Encefalite Japonesa/genética , Encefalite Japonesa/imunologia , Feminino , Genótipo , Vacinas contra Encefalite Japonesa/genética , Vacinas contra Encefalite Japonesa/imunologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Viral/genética , Suínos , Vacinação/veterinária , Células Vero , Vírion/genética , Vírion/imunologia
8.
Emerg Infect Dis ; 23(11): 1883-1886, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29048288

RESUMO

The virulence of genotype I (GI) Japanese encephalitis virus (JEV) is under debate. We investigated differences in the virulence of GI and GIII JEV by calculating asymptomatic ratios based on serologic studies during GI- and GIII-JEV endemic periods. The results suggested equal virulence of GI and GIII JEV among humans.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Encefalite Japonesa/virologia , Adulto , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/epidemiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Taiwan/epidemiologia , Virulência
9.
Int J Mol Sci ; 18(9)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895925

RESUMO

Bovine lactoferrin (bLF) presents in milk and has been shown to inhibit several viral infections. Effective drugs are unavailable for the treatment of dengue virus (DENV) infection. In this study, we evaluated the antiviral effect of bLF against DENV infection in vivo and in vitro. Bovine LF significantly inhibited the infection of the four serotypes of DENV in Vero cells. In the time-of-drug addition test, DENV-2 infection was remarkably inhibited when bLF was added during or prior to the occurrence of virus attachment. We also revealed that bovine LF blocks binding between DENV-2 and the cellular membrane by interacting with heparan sulfate (HS), dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN), and low-density lipoprotein receptors (LDLR). In addition, bLF inhibits DENV-2 infection and decreases morbidity in a suckling mouse challenge model. This study supports the finding that bLF may inhibit DENV infection by binding to the potential DENV receptors.


Assuntos
Moléculas de Adesão Celular/metabolismo , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Heparitina Sulfato/metabolismo , Lactoferrina/farmacologia , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de LDL/metabolismo , Animais , Antivirais/farmacologia , Bovinos , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Receptores Virais/efeitos dos fármacos , Células THP-1 , Células Vero , Ensaio de Placa Viral , Ligação Viral/efeitos dos fármacos
10.
PLoS Negl Trop Dis ; 9(10): e0004167, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26495991

RESUMO

Formalin-inactivated Japanese encephalitis virus (JEV) vaccines are widely available, but the effects of formalin inactivation on the antigenic structure of JEV and the profile of antibodies elicited after vaccination are not well understood. We used a panel of monoclonal antibodies (MAbs) to map the antigenic structure of live JEV virus, untreated control virus (UCV), formalin-inactivated commercial vaccine (FICV), and formalin-inactivated virus (FIV). The binding activity of T16 MAb against Nakayama-derived FICV and several strains of FIV was significantly lower compared to live virus and UCV. T16 MAb, a weakly neutralizing JEV serocomplex antibody, was found to inhibit JEV infection at the post-attachment step. The T16 epitope was mapped to amino acids 329, 331, and 389 within domain III (EDIII) of the envelope (E) glycoprotein. When we explored the effect of formalin inactivation on the immunogenicity of JEV, we found that Nakayama-derived FICV, FIV, and UCV all exhibited similar immunogenicity in a mouse model, inducing anti-JEV and anti-EDII 101/106/107 epitope-specific antibodies. However, the EDIII 329/331/389 epitope-specific IgG antibody and neutralizing antibody titers were significantly lower for FICV-immunized and FIV-immunized mouse serum than for UCV-immunized. Formalin inactivation seems to alter the antigenic structure of the E protein, which may reduce the potency of commercially available JEV vaccines. Virus inactivation by H2O2, but not by UV or by short-duration and higher temperature formalin treatment, is able to maintain the antigenic structure of the JEV E protein. Thus, an alternative inactivation method, such as H2O2, which is able to maintain the integrity of the E protein may be essential to improving the potency of inactivated JEV vaccines.


Assuntos
Anticorpos Neutralizantes/sangue , Desinfetantes/farmacologia , Vírus da Encefalite Japonesa (Espécie)/efeitos dos fármacos , Epitopos/imunologia , Formaldeído/farmacologia , Vacinas contra Encefalite Japonesa/imunologia , Inativação de Vírus , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos BALB C , Vacinas de Produtos Inativados/imunologia , Proteínas do Envelope Viral/imunologia
11.
Comp Immunol Microbiol Infect Dis ; 36(4): 387-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23466196

RESUMO

Culex flavivirus (CxFV), a member of the genus flavivirus, is a novel insect-specific flaviviruses that can be divided into two subtypes, the cytopathic Asia/U.S. and the noncytopathic Africa/Caribbean/Latin American subtypes. The CxFV circulates in several Asian countries, and here we conducted the first study investigating CxFV in Taiwan. A total of 14,016 mosquitoes were collected between 2010 and 2012 and 3.4% (6/179) of the pools were CxFV-positive. The phylogenetic analyses indicate that the Taiwan isolates are closely related to the Africa/Caribbean/Latin American subtype, but form an independent cluster. In the cytology experiments, the CxFV Taiwan isolate infected only mosquito cells and caused cell-cell fusion that might be associated with a unique glycine residue at position 117 within the envelope protein, which is shared with the cytopathic effect-causing Asia/US subtype. This study marks the first time the Africa/Caribbean/Latin American subtype of CxFV has been identified in an Asian country and grouped into a novel cluster.


Assuntos
Culex/virologia , Flavivirus/isolamento & purificação , Animais , Sequência de Bases , Flavivirus/classificação , Flavivirus/genética , Dados de Sequência Molecular , Filogenia , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Taiwan
12.
Vet Microbiol ; 163(3-4): 248-56, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23415032

RESUMO

A shift in prevalence from Japanese encephalitis virus (JEV) genotype III (GIII) to GI virus has been observed in several Asian countries. Genotype I virus was first detected in Taiwan in 2008, and became the dominant JEV island-wide within a year. We conducted a serosurvey using swine serum specimens from multiple counties in Taiwan following the transmission season in 2009 and results showed 67-100% of JEV seropositive swine showed evidence of GI virus infection. The envelope (E) protein is a structural protein that elicits protective neutralizing antibodies (Nt Ab). The GIII at222 (a live-attenuated swine vaccine) virus E protein differs at eight amino acid residues (E-123, E-129, E-138, E-176, E-209, E-222, E-327 and E-366) from that of the GI TC2009-1 strain (isolated in Taiwan in 2009). Twenty piglets were vaccinated with two doses of at222 vaccine, and serum specimens were collected to evaluate the strain-specific Nt Ab titer against GIII at222, GIII CJN, and GI TC2009-1 viruses. Seropositivity rates (Nt Ab titer≥1:10) and geometric mean titers (GMT) were similar against at222 and CJN viruses. However, sera from swine vaccinated with at222 were least potently neutralizing against GI TC2009-1 virus. The estimated protective threshold against GI virus was observed only when the PRNT50 against at222 virus was ≥1:320. Thus, our current study indicates that the live-attenuated at222 swine vaccine can be partially protective against GI virus, and suggests that the efficacy of GIII swine vaccines currently used may require a comprehensive reevaluation in the field.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/veterinária , Vacinas contra Encefalite Japonesa/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Animais , Anticorpos Antivirais/sangue , Proteção Cruzada/imunologia , Vírus da Encefalite Japonesa (Espécie)/química , Encefalite Japonesa/prevenção & controle , Genótipo , Suínos , Doenças dos Suínos/prevenção & controle , Taiwan , Vacinação/veterinária , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
13.
PLoS Negl Trop Dis ; 6(9): e1834, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029592

RESUMO

BACKGROUND: Genotype I (GI) Japanese encephalitis virus (JEV) that replaced GIII virus has become the dominant circulating virus in Asia. Currently, all registered live and inactivated JEV vaccines are derived from genotype III viruses. In Taiwan, the compulsory JEV vaccination policy recommends that children receives four doses of formalin-inactivated Nakayama (GIII) JEV vaccine. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate the influence of genotype replacement on the post-vaccination viral neutralizing ability by GIII and GI viruses, the small panel of vaccinated-children serum specimens was assembled, and the reciprocal 50% plaque-reduction neutralizing antibody titers (PRNT(50)) were measured against Nakayama vaccine strain, CJN GIII human brain isolate and TC2009-1 GI mosquito isolate. The seropositivity rate (PRNT(50) ≥ 1:10) and geometric mean titers (GMT) against the TC2009-1 virus were the lowest among the three viruses. The protective threshold against the CJN and TC2009-1 viruses could only be achieved when the GMT against Nakayama virus was ≥ 1:20 or ≥ 1:80, respectively. Using undiluted vaccinees' sera, the enhancement of JEV infection in K562 cells was observed in some low or non-neutralizing serum specimens. CONCLUSIONS/SIGNIFICANCE: Our preliminary study has shown that neutralizing antibodies, elicited by the mouse brain-derived and formalin-inactivated JEV Nakayama vaccine among a limited number of vaccinees, have reduced neutralizing capacity against circulating GI virus, but more detailed studies are needed to address the potential impact on the future vaccine policy.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Vacinas contra Encefalite Japonesa/imunologia , Adolescente , Animais , Ásia , Criança , Pré-Escolar , Vírus da Encefalite Japonesa (Espécie)/classificação , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/imunologia , Genótipo , Humanos , Lactente , Vacinas contra Encefalite Japonesa/administração & dosagem , Camundongos , Testes de Neutralização , Taiwan , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Ensaio de Placa Viral
14.
J Gen Virol ; 93(Pt 6): 1185-1192, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22337639

RESUMO

Group and serocomplex cross-reactive epitopes have been identified in the envelope (E) protein of several flaviviruses and have proven critical in vaccine and diagnostic antigen development. Here, we performed site-directed mutagenesis across the E gene of a recombinant expression plasmid that encodes the Japanese encephalitis virus (JEV) premembrane (prM) and E proteins and produces JEV virus-like particles (VLPs). Mutations were introduced at I135 and E138 in domain I; W101, G104, G106 and L107 in domain II; and T305, E306, K312, A315, S329, S331, G332 and D389 in domain III. None of the mutant JEV VLPs demonstrated reduced activity to the five JEV type-specific mAbs tested. Substitutions at W101, especially W101G, reduced reactivity dramatically with all of the flavivirus group cross-reactive mAbs. The group and JEV serocomplex cross-reactive mAbs examined recognized five and six different overlapping epitopes, respectively. Among five group cross-reactive epitopes, amino acids located in domains I, II and III were involved in one, five and three epitopes, respectively. Recognition by six JEV serocomplex cross-reactive mAbs was reduced by amino acid substitutions in domains II and III. These results suggest that amino acid residues located in the fusion loop of E domain II are the most critical for recognition by group cross-reactive mAbs, followed by residues of domains III and I. The amino acid residues of both domains II and III of the E protein were shown to be important in the binding of JEV serocomplex cross-reactive mAbs.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/virologia , Epitopos/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Anticorpos Antivirais/imunologia , Reações Cruzadas , Análise Mutacional de DNA , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Humanos , Glicoproteínas de Membrana/química , Dados de Sequência Molecular , Proteínas do Envelope Viral/química
16.
Antimicrob Agents Chemother ; 53(2): 824-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19015337

RESUMO

Salmonella genomic island 1 was identified for the first time in Salmonella enterica serovar Virchow isolated from humans in Taiwan. The complex class 1 integron conferring multidrug resistance was shown to be inserted within open reading frame (ORF) S023 and contains for the first time a partial transpositional module. The 5-bp target duplication flanking the complex integron suggests that its insertion in ORF S023 was by transposition.


Assuntos
Genes Bacterianos/genética , Ilhas Genômicas/genética , Integrons/genética , Salmonella enterica/genética , Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Infecções por Salmonella/microbiologia , Salmonella enterica/efeitos dos fármacos , Taiwan , Tianfenicol/análogos & derivados , Tianfenicol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA